Inductive Algebras and Homogeneous Shifts
نویسندگان
چکیده
Inductive algebras for the irreducible unitary representations of the universal cover of the group of unimodular two by two matrices are classified. The classification of homogeneous shift operators is obtained as a direct consequence. This gives a new approach to the results of Bagchi and Misra.
منابع مشابه
Inductive Limit Algebras from Periodic Weighted Shifts on Fock Space
Noncommutative multivariable versions of weighted shift operators arise naturally as ‘weighted’ left creation operators acting on the Fock space Hilbert space. We identify a natural notion of periodicity for these N tuples, and then find a family of inductive limit algebras determined by the periodic weighted shifts which can be regarded as noncommutative multivariable generalizations of the Bu...
متن کاملInductive Algebras for Trees
Let G be a locally compact group and π : G → U(H) a unitary representation of G. A commutative subalgebra of B(H) is called π-inductive when it is stable through conjugation by every operator in the range of π. This concept generalizes Mackey’s definition of a system of imprimitivity for π; it is expected that studying inductive algebras will lead to progress in the classification of realizatio...
متن کاملClassifying C*-algebras via ordered, mod-p K-theory
We introduce an order structure on K 0 ( ) 9 K0(; Z/p ) . This group may also be thought of as Ko(; 7z @ Z/p ) . We exhibit new examples of real-rank zero C*-algebras that are inductive limits of finite dimensional and dimension-drop algebras, have the same ordered, graded K-theory with order unit and yet are not isomorphic. In fact they are not even stably shape equivalent. The order structure...
متن کاملExtensions of C∗-algebras and Quasidiagonality
Using extension theory and recent results of Elliott and Gong we exhibit new classes of nuclear stably finite C∗-algebras , which have real rank zero and stable rank one, and are classified by K-theoretical data. Various concepts of quasidiagonality are employed to show that these C*-algebras are not inductive limits of (sub)homogeneous C∗-algebras.
متن کاملFrom Complete to Partial Flags in Geometric Extension Algebras
A geometric extension algebra is an extension algebra of a semi-simple perverse sheaf (allowing shifts), e.g. a push-forward of the constant sheaf under a projective map. Particular nice situations arise for collapsings of homogeneous vector bundle over homogeneous spaces. In this paper, we study the relationship between partial flag and complete flag cases. Our main result is that the locally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009